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Abstract
This study employs a multifaceted approach, combining remote sensing, GIS-based  

spatial autocorrelation techniques, and Sentinel-1 Synthetic Aperture Radar (SAR) 

imagery to comprehensively evaluate flood-affected areas in the southwestern fringe of 

Guwahati city. The unplanned urban expansion within the adjacent main city is causing 

issues like flooding and waterlogging, impacting the city's residents. Critical assessment 

is needed in the fringe areas to avoid similar consequences. The historical Annual 

Flood Inundation Layers available in the ISRO-BHUVAN portal are analyzed in a GIS 

environment village-wise considering 10 maps spanning from 2001 to 2010 to identify 

the vulnerable villages. The National Remote Sensing Centre (NRSC) generates these 

layers by integrating different flood waves in a calendar year considering the maximum 

flood extent. The village-wise inundation statistics are analyzed using the Global Moran's 

I to understand whether the inundation is clustered, dispersed, or random during this 

timeframe. The results show very high z-score and very low p-values indicating the  

presence of statistically significant spatial clusters.  The historical data are further 

analyzed using Local Moran’s I and Getis-Ord Gi* statistics and vulnerable village 

clusters are delineated towards the study area's north, west, and central portion during 

these 10 years. The clusters show temporal dynamism and interconnection in major flood 

years. To assess these areas in real-time after a decade, the Sentinel-1 Synthetic Aperture  

Radar (SAR) imagery was used during a major flood event in 2020. The village-wise 

inundation is determined by extracting the flood signatures through the intensity 
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thresholding method. The method segregates land pixels against water pixels based  

on the backscattered value range of the Radar signal. The SAR data analysis is compared 

with the 2010 results due to their similar areal extent. The Area Under the Receiver 

Operating Characteristic (ROC) Curve is 70.38%, indicating that the analysis demonstrates 

good prediction accuracy. The study provides a roadmap for urban planning, disaster 

management, water resource management, and related disciplines.

Keywords: Urban Expansion, Fringe Area Development, Flood-prone Villages, Spatial 

Autocorrelation, Synthetic Aperture Radar

1. Introduction
It is crucial to address the issue of flooding in the peri-urban or fringe areas of 

developing cities, especially in the face of climate change. These areas are at risk due 

to the prevalence of informal settlements in low-lying agricultural lands, floodplains, 

protected areas such as Ramsar sites, and areas with high biodiversity (Winter & 

Karvonen, 2022). The dynamism in these areas with a gradual transition of green spaces 

into impervious surfaces with the blocking of natural waterways makes them more 

vulnerable to flood disasters in comparison to rural areas (Wang et al., 2023). Due to 

lower property and service tax compared to the city, peri-urban areas attract industries, 

commercial establishments, etc. amplifying the urbanization process (Nallathiga, 

2015). Urbanization indicates economic growth but at the same time, it has negative 

impacts in terms of the physical environment such as loss of agricultural land, surface, 

and groundwater depletion, changes in geomorphic features, flooding, and landslides 

(Mahapatra et al., 2014). Proper planning is required to make these areas resilient and 

sustainable to ensure supporting quality standards of life as they are carriers of urban 

expansion and act as a distribution centre of goods and energy between the city and 

external regions (Dong et al 2022; Mahanta and Borgohain; 2022).

Guwahati, the gateway to northeast India, is continuously expanding in terms 

of population and urbanization. The city's growth is due to the development of 

infrastructure to support the ever-increasing population. However, this growth 

has caused encroachment in hills, wetlands, and government lands. Flash floods 

and waterlogging occur annually in Guwahati city during monsoon season due to  
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overflowing feeder drains (ASDMA, 2014). Urban flooding causes socio-economic 

impacts such as education, health, transportation, drinking water, sanitation, and 

livelihood insecurity (Kashyap & Mahanta, 2020). Anthropogenic activities magnify the 

inundation (Rashiq & Prakash, 2023), and poor urban planning makes the city vulnerable 

to natural  disasters. Spatial planning with proper land use allocation is crucial in 

minimizing exposure to natural hazards (Abdrabo et al., 2021). Remote sensing and  

GIS technology are extensively used in site suitability analysis for urban expansion  

(Saleh & Rawashdeh, 2007, Huang et al., 2010, Sun et al., 2020, Sahin et al., 2024). Flood  

vulnerability assessment regarding people and places is essential for emergency 

management (Chen et al 2021). The city's Southwest direction is a potential site for 

a sustainable satellite township. The study aims to identify spatially significant 

clusters of flood-vulnerable villages, by adopting spatial autocorrelation techniques 

by analyzing past data and real-time SAR imagery in a GIS environment. The concept 

of spatial autocorrelation is based on Waldo Tobler's first law of geography, which 

emphasizes that "near things are more related than distant things" (Manning et al., 

2023).  This spatial autocorrelation technique is commonly used in various fields to 

understand spatial clustering of variables, for example in health sciences (Shariati 

et al., 2020, Vilinová & Petrikovičová., 2023, Yin et al., 2024), traffic analysis (Le et al., 

2022), rainfall pattern analysis (Rousta et al., 2017), pollution concentration (Liu 

et al., 2013), waste management (Tsui et al., 2022), and natural hazards (Lin et al., 

2017). To confirm these vulnerable villages in real-time, Sentinel 1 Synthetic Aperture 

Radar (SAR) imagery of a particular flood date, after a decade is used. Having up-to-

date information on flooding is important for emergency response and reducing 

the risk of flood damage. SAR is particularly useful as it can penetrate through 

clouds and provide day and night images making it an effective remote sensing 

method for mapping real-time flood events (Garg et al. 2024). The village-wise  

real-time inundation statistics obtained from SAR are compared with the vulnerable 

villages demarcated for multiple major flood years to ensure the clustered pattern. 

1.1 Study Area:
The study area encompasses the administrative blocks of Rani and Chayani Barduar 

in Kamrup – Metro and Rural districts of Assam, spanning a total of 423.03 km2 with a  

total population of 184411 in 129 villages. The southwestern region of the city is 
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primarily utilized for agriculture, while the southern area is a narrow valley encircled 

by hills and the picturesque Chandubi Lake. The Guwahati Metropolitan Development 

Authority (GMDA) Master Plan aims to build a new town featuring an Information 

Technology hub and Special Economic Zone. The study area is bordered by the 

Brahmaputra River in the north, the Kulshi River in the west, Meghalaya plateau hills 

in the south and southeast, and Guwahati city in the northeast (Figure 1).  The major 

geological formations within the study area are alluviums of the Brahmaputra River and 

its tributaries and Precambrian rocks of the Meghalaya plateau. The distinguishable 

geomorphic features within the study area are floodplains, alluvial plains, piedmont 

zones, and denudational hills. The Kulsi river system is also present in the area, with 

all streams flowing towards the north to merge with the Brahmaputra River. The  

region is prone to annual flooding due to heavy rainfall. As per the Indian  

Meteorological Department report (IMD), the average annual rainfall in the study 

area betwee 2018-2022 is 1583.07 mm. The region experiences a tropical monsoon  

climate with rainfall from June to September. The average temperature varies from  

9ºC in winter to 35ºC in summer.

Figure 1: Study area map with recent field photographs of flood-vulnerable sites
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2. Materials and Methods:

2.1 Flood History
The Decision Support Centre (DSC) under the National Remote Sensing Centre (NRSC) 

in Hyderabad, India is responsible for incorporating space technology into the Disaster 

Management Support (DMS) program by the Indian Space Research Organization 

(ISRO). The DSC has released an annual flood inundation atlas (1998-2010) for Assam 

and Bihar using optical and microwave remote sensing techniques to analyze different 

flood waves throughout the year with an accuracy of up to a scale of 1:250000.  This 

archive is freely available in ISRO-BHUVAN portal. Hailin et al. (2009) have used 

the same scale to assess flood risk in Hubei Province. Out of 13 available maps, the 

inundation history of the study area has been analyzed for 10 years (2001-2010). The 

available maps are georeferenced using Arc GIS 10.8 in WGS 84 UTM 46 N projections, 

the raster maps are converted to vector polygons, and year-wise flood inundation is 

calculated.  The village layer of the study area is collected from Assam Remote Sensing 

Application Centre, Govt of Assam, India, and the population data are collected from 

the District Census Handbook (DCHB) published by Census of India (2011). The  

village layer is superimposed in the GIS environment, and the village-wise inundation 

area is calculated for the specific period. 

2.2 Flood Clusters Using a Spatial Autocorrelation Technique
Spatial autocorrelation is a type of correlation that measures the degree of alignment 

between two attributes based on their relative magnitudes (Griffith & Chun, 2018) 

or their similar patterns within a geographic area (Lo et al., 2022). Positive spatial 

autocorrelation occurs when closer geographic locations have similar attributes (Griffith 

& Lea, 2005), whereas negative spatial autocorrelation is observed when distant values 

are more similar than nearby values, contradicting Tobler's law (Fischer & Wang, 2011). 

Spatial correlation can be global or local, with global Moran's I being a common 

measure for evaluating whether the pattern expressed is clustered, dispersed, or 

random for a given set of features and associated attributes in a study area (Fasona et 

al., 2011, Prasannakumar et al., 2011). The village-wise inundation statistics in terms 
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of percentage of inundation are considered as the numerical field used in assessing 

spatial autocorrelation. A small village with a large inundation area is considered more 

vulnerable than a large village with a relatively small inundation.

The global Moran’s I can be calculated for n observations on a variable x at locations (i,j)

Where,

 x
_

 = the mean of the variablex, x
i
 = the value of the variable x at location i, x

j
 = the value 

of the variable x at location j, w
ij
 = the elements of the weight matrix, n = number of 

observations, S
0
 = Sum of the elements of the weight matrix = 

The Global Moran’s I value ranges from -1 to +1. A value of ‘-1’ indicates perfect clustering 

of dissimilar values or perfect dispersion. A value of 0 indicates no autocorrelation 

or perfect randomness. A value of +1 indicates perfect clustering of similar values. 

The Global Moran’s I use inferential statistics, meaning the results of the analysis are 

interpreted within the context of its null hypothesis, considering a random distribution 

of the attributes under scrutiny. A significant p-value, coupled with a positive Moran’s 

I, suggests that the high and/or low values in the dataset are more spatially clustered 

than would be expected under such a random distribution, leading to the rejection of 

the null hypothesis. Conversely, a significant negative Moran’s I indicate that the spatial 

distribution of high and low values is more dispersed than expected (Raza et al., 2020). 

For spatial relationships, the ‘contiguity edges only’ option in ArcGIS is used where 

only neighboring polygon features that share a boundary, or overlap will influence the 

computations of the target polygon.

Global Moran's I measures the clustering strength of a map as a whole, whereas local 

Moran's I identifies the location of clusters on the map. The formula for local Moran's 

I is similar to its global counterpart, with the only difference being that it only iterates 

through the neighbors of one polygon instead of all pairs of polygons (Tsui et al. 2022).
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Where,  

Moran’s I value greater than E(I) implies positive autocorrelation and smaller implies 

negative spatial autocorrelation. The clusters can be either high-high (meaning high 

values in a high-value neighborhood) or low-low (meaning low values in a low-value 

neighborhood), a high-low (meaning a high value in a low-value neighborhood), or a 

low-high (meaning a low value in a high-value neighborhood) outlier (Fu et al., 2014).  

Another reliable geostatistical technique for mapping clusters and determining 

statistically significant hot or cold spots is the Gi* statistic, also known as the Getis-Ord 

Gi. It assesses the Gi* for each feature in a dataset and identifies where features with 

high or low z-scores and p-values are spatially clustered. A positive z-score indicates a 

higher clustering of high values, while a negative z-score indicates a higher clustering of 

low values (Hazaymeh et al., 2022).
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Where  x
j
 is the attribute value for the feature j, w

i
,

j
 is the weight between features i and j 

and n is equal to the total number of features. TheGi* statistics is the z score. 

The vulnerable village clusters are finally delineated year-wise integrating Asselin’s 

Local Moran’s I and the Getis-Ord Gi statistics.

2.3 Real-time validation using SAR after 10 years on a significant flood date
To identify the real-time extent of flood inundation within the study area a decade later, 

a significant flood date, July 16, 2020, was selected based on heavy rainfall in Kamrup 

Rural and Metro districts of Assam and the adjacent RiBhoi district of Meghalaya, as per 

INSAT-3D images provided by the India Meteorological Department (IMD). The state's 

leading newspaper, The Assam Tribune, published a report on the same date detailing 

the severity of the flood conditions in Kamrup Rural and Kamrup Metro, where the 

study area is an integral part (Figure 6).

2.3.1 SAR Data
The Sentinel 1 mission involves two operational satellites called Sentinel 1A and  

Sentinel 1B that were launched by the European Space Agency in April 2014 and 

April 2016, respectively. These satellites carry a C Band Synthetic Aperture Radar 

(C-SAR) payload and follow a sun-synchronous orbit with a repeat cycle of 12 days 

(Raspini et al., 2018; Potin et al., 2016). The data they collect is available for free on the 

Copernicus Open Access Hub platform of the European Space Agency (ESA) and is used  

extensively in critical decision-making during emergencies such as natural disasters 

or humanitarian crises (Skoda & Adam, 2020). These RADAR datasets can be analyzed 

using the Sentinel Application Platform (SNAP), an open-source architecture developed 

by the European Space Agency. To download the necessary product, users only need 

to create a login ID. To determine the exact extent of flooding on a specific date, it is 

crucial to have data on permanent bodies of water and their extent before the flood 

season. Therefore, two images depicting pre-flood and during-flood conditions are 

required. The pre-flood image is a Sentinel 1A Ground Range Detected (GRD) product 

from February 15th, 2020, while the during-flood image is a Sentinel 1B GRD product 

captured on July 16th, 2020.
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Table 1: Details of Sentinel 1 products considered for the study

Satellite Product Name Date and 

Time
Product 
Type 

Acqui-

sition 

Mode

Spatial 

Resolution

Sentinel 

1A

S1A_IW_GRDH_1SD-

V_20200215T115719_

031263_031263_0398

8A_A076

15 Feb 

2020, 

14:31:22

Level-1 

GRD 

IW 10×10 m

Sentinel 

1B

S1B_IW_GRDH_1SD-

V_20200716T234628_

20200716T234657_02

2503_02AB64_13F1

16 Jul 

2020, 

17:40:35

Level-1 

GRD 

IW 10×10 m

2.3.2 Processing of the data
To process the downloaded data, SNAP open-source software is used. The image needs to 

be pre-processed to remove any distortion and enhance its quality. The pre-processing 

involves several steps that are performed sequentially. The raw data, which comes in 

a zip format from Copernicus Open Access Hub, is directly processed using the SNAP 

software step by step. To ensure the accuracy of the orbital data, improve geocoding, and 

the subsequent processing steps, the orbit file is applied (Hong et al., 2017). To convert 

the pixel intensity or radar reflectivity (DN number) to radar cross-section (RCS), or 

scattering cross-section, the radiometric calibration technique is used (Schmidt et 

al., 2020; WeiB, 2018). The RCS is the measure of the reflective strength of the radar 

target, and it is indicated by the symbol ‘sigma’. The value of ‘sigma’ depends upon the 

shape, dielectric properties, orientation, roughness, etc. of the target, which also varies 

for different observation angles, frequencies, and polarizations. Since the radar return 

signifies the proportion of energy scattered by the distributed area corresponding to the 

size of the image pixel, a normalized measure is required to relate the inferred target 

area, derived from the scattering cross-section, to the actual geometrical area on the 

ground surface. This unit-less normalized measure is defined as ‘backscatter coefficient’, 

‘differential radar cross-section,’ or ‘normalized radar cross-section,’ denoted by 

‘sigma nought’ (Woodhouse 2006; Sentinel user guide). Due to the low backscattering 
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response, flooded areas appear dark, and strong backscattering from rough soil surfaces 

and vegetation causes land surfaces to appear bright (Manjusree et al., 2012). 'Speckles' 

are random, high-frequency noises present in SAR images, causing a granular, salt, and 

peppery pattern with degradation of image quality, as well as loss of information (Choi 

& Jeong 2019; White et al., 2015). To enhance the image quality, the 'speckle filtering' 

technique is applied. Different speckle filters are available in SNAP, such as Gamma 

Map, Lee, Refined Lee, and Lee Sigma, with different window sizes. Comparing different 

filters, the Lee (5*5) window size is found to be suitable for the study. The side-looking 

geometry of RADAR and topographic relief causes several geometric distortions, such 

as foreshortening, layover, and shadow (Chen et al., 2018; Esmaeilzade et al., 2015). 

The geometric distortion caused by topography is corrected using the Range Doppler 

terrain correction, which uses a digital elevation model to rectify the location of each 

pixel. The process utilizes available orbital information in the metadata, radar timing 

annotations, and slant-to-ground range conversion parameters with the reference DEM 

(Filipponi, 2019). For this study, the SRTM DEM with 3 arcsec and bilinear interpolation 

resampling technique has been used for geometrical correction. The final product is 

converted to decibel (dB) units using logarithmic transformation. Conversion of linear 

amplitude to decibels (dB) improves the image display by compressing a wide range of 

values and reducing the impact of multiplicative noise (Filipponi, 2019).

3. Results

3.1 Historical Flood Vulnerable Villages (2001-10)
Based on the area of inundation, the villages are classified into five categories: Very High 

(above 75%), High (75-50%), Moderate (50-25%), Low (25-10%), and Very Low (below 

10%). The year-wise frequency distribution for different categories is determined for 10 

years. Figure 2 shows the significant distribution of flood events in all five categories. 

During peak flooding years, such as 2002 and 2004, six to eight villages fall under the 

‘high’ category, while twelve to sixteen villages fall under the ‘moderate’ category, 

indicating the severity of flood hazards in the study area.
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Figure 2: Frequency distribution graph of different flood categories

Out of 10 years of analysis, the highest flood inundation is observed for the year 2003 

followed by 2007, 2002, and 2004. The area undergoing inundation is 67.23, 64.33, 61.35, 

and 58.49 km2 respectively. The lowest inundation observed within this timeframe was 

in 2009 with only 4.75 km2 area undergoing inundation. Table 2 depicts the number of 

villages and populations affected during each flood event. The figures show that more 

than 1 lakh people are vulnerable during major flood years. 

Table 2: The vulnerability of villages and population during the study period, and 

z-score, p-values of the spatial autocorrelation analysis.

Year Total 

Area 

under 

flood 

 ( km2)

Total 

Village

Total  

popula-

tion

Global Moran’s I Getis–Ord Gi* Type of  

distribu-

tion
Moran’s 

 I

z- 

score

p- 

value

General  

G

z-score p- 

value

2001 15.94 26 69688 0.31 8.23 0 0.019599 7.83 0 Clustered

2002 61.35 97 166139 0.34 8.87 0 0.010899 8.88 0 Clustered

2003 67.23 87 158527 0.32 8.34 0 0.010530 8.81 0 Clustered

2005 10.16 29 78721 0.11 3.49 0.00049 0.015892 3.36 0.000793 Clustered
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Year Total 

Area 

under 

flood 

 ( km2)

Total 

Village

Total  

popula-

tion

Global Moran’s I Getis–Ord Gi* Type of  

distribu-

tion
Moran’s 

 I

z- 

score

p- 

value

General  

G

z-score p- 

value

2008 33.07 76 135240 0.24 6.24 0 0.011231 7.24 0 Clustered

2009 4.75 25 70693 0.11 3.26 0.00109 0.014244 3.04 0 Clustered

2010 10.96 33 64261 0.16 4.55 0.000005 0.013685 3.81 0 Clustered

2020 

SAR

13.39 50 83359 0.16 4.71 0.000002 0.010994 4.62 0.000004 Clustered

3.2 Spatial Autocorrelation Results
Based on the positive z-score and significant p-value of Global Moran’s I, it seems likely 

that the null hypothesis can be rejected. This means that the distribution of high and/or 

low values in the dataset is more spatially clustered than expected by chance, with less 

than a 1% likelihood that the pattern is random. To identify flood vulnerable clusters, we 

need to examine the local level of clustering and identify villages where the percentage 

of inundation is particularly high. Figure 3 displays the results of Anselin’s Local Moran’I 

statistics during major flood years. High-High clusters are concentrated in the north, 

west, and central parts of the study area, while low-low clusters are mainly found in 

the east and south.  Spatial outliers, such as low-high clusters, are prominent near-high 

clusters, as these are locations with low values and high-value neighbors. 

Figure 3: Local Moran’s I cluster analysis of the study area between 2001 and 2010
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According to the analysis using the Getis-Ord Gi* statistics, there are both flood hot 

spots and cold spots. These spots have confidence levels of 90%, 95%, and 99%. The 

hot spots indicate an intense clustering of high positive z values, while the cold spots 

show an intense clustering of low negative z values (Figure 4). These spots are located 

spatially in accordance with the clusters identified by the local Moran's I.  

Figure 4: Getis-Ord Gi* hot spot and cold spot analysis of the 

study area between 2001 and 2010

The flood-vulnerable clusters are finally delineated by integrating the Local Moran’s I 

High-High clusters and hotspots from Getis-Ord Gi* analysis (Figure 5)

Figure 5: Vulnerable village clusters during 2001 and 2010

3.3 Results of SAR data analysis
The pre-flood image analysis provides information about permanent water bodies so 

that there won’t be any overestimation of flooded areas during the flood. Permanent 
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water bodies contain smooth open surfaces acting as specular reflectors, scattering 

the radar energy away from the sensor. Thus relatively dark pixels appear in the image 

in comparison to non-water areas (Martinis and Rieke, 2015).  The pre-flood imagery 

of 15th February 2020 is processed following the steps as mentioned earlier and the 

final terrain corrected product in dB for both VV and VH polarization is obtained. 

VH polarization generates correctly defined surfaces and is found more suitable 

for demarcating flooded areas in comparison to VV polarization (Conde & Munoz, 

2019).  The most widely accepted technique in differentiating land pixels vs. water 

is the intensity thresholding method (López-Caloca et al., 2018). The backscattered 

value range can provide significant discrimination between water and non-water 

regions. Careful observation of the histogram provides a threshold value to separate 

water bodies from other features (Conde and Munoz 2019; Zhang et al. 2020). By using 

a suitable band maths expression (Sigma0_VH_db < -21.22), the water pixels can be 

extracted. The permanent water bodies within the study area are mainly stretches of 

river Brahmaputra, river Kulshi, Deepor Beel Lake, Chandubi Lake, and some ponds. 

The total area of permanent water bodies is found to be 14.03 km2. Flood extent 

delineation is done using Sentinel 1B GRD product captured on 16th July 2020. The 

image is pre-processed to the final terrain-corrected dB product of both VV and VH 

polarization. The histogram has been analyzed and a threshold backscatter value  

(dB = -24.26) has been identified to separate water and non-water pixels from the image. 

The total area undergoing inundation is calculated in the GIS environment and found 

27.42 km2. This also includes the area of permanent water bodies, misclassified pixels, 

and topographic shadows. Misclassified pixels mainly occur in and around airport 

premises, flat surfaces such as airport runways, parking, and new construction sites. 

These areas are showing low backscattering which is not related to flooding. In many 

works of literature, misclassified pixels in airport runways and other flat-constructed 

surfaces are mentioned and validated using suitable techniques. Topographic shadow 

also shows dark tone not necessarily water pixels and are mainly found in forest areas 

at higher elevation. Validation is done using LISS-4 imagery and Google Earth. Nearly 

0.107 km2 areas are found under misclassified pixels due to airport runways and other 

flat construction sites and 0.023 km2 due to topographic shadow. Excluding these areas, 

the total inundation on 16th July 2020 was found to be 13.39 km2. 
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Figure 6: Sentinel-1 SAR-derived flood area estimation during a  

major flood date (evident from the cloud condition by INSAT-3D and 

news report) using histogram-based intensity thresholding method,  

cluster analysis using Local Moran’s I and Getis Ord G* statistics 

3.4 Validation 
The Receiver Operating Characteristic (ROC) curve is a proven technique to ensure 

the classifier’s efficiency and sensitivity of the method (Avand et al. 2021). Due to their 
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similar area coverage, the village-wise inundation statistics obtained from SAR data 

analysis are compared with the 2001 results.  In Figure 7, the Area under the ROC curve 

(AUC) shows 70.38% indicating good predictive ability (Tao et al. 2021). 

Figure 7: ROC analysis between 2001 historical data and 2020 SAR data

4. Discussion
The Local Moran's I and Getis-Ord Gi* analysis results reveal prominent flood clusters 

in the study area's north, west, and central parts. A similar trend of clustering is also 

evident from the SAR analysis.  Figure 5 shows the dynamics of these vulnerable village 

clusters during the study period. The north and west clusters are seen throughout the 

analysis period and there is a chance of flood accumulation initiation. The central 

cluster is prominent in 2003, 2008 and 2010. During major flood events, the clusters 

tend to get interconnected. Though the vulnerable villages show interconnectivity, 

for the administrative and socio-economic point of view, the villages are classified 
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into three major clusters: the clusters in the west consisting of 19 villages with an area 

coverage of 49.06 km2 with total population of 26578; the clusters in the north consisting 

of 18 villages covering 61.03 km2 with a total population of 74442; and the clusters 

in the central portion consisting of 17 villages with 37.29 km2 coverage with a total  

population of 16915.    

Figure 8 shows the location of the clusters considering land use land cover, existing 

stream network, and a digital elevation model in the background. The analysis of the 

cluster in the west shows a complex network of interconnecting streams and wetlands 

making this area flood-prone. The Kulshi and Batha Rivers from the south, and ‘Rani 

Nadi’ from the east interconnect here. In Figure 1 (c) and (d), a recent field photograph 

within this cluster, taken in October 2023, shows the receding floodwaters, providing 

evidence of the devastating floods during the monsoon season. The prominent hill 

ranges visible in the photograph are part of the elevated Meghalaya plateau upstream 

of this catchment, known for receiving the world's heaviest rainfall. 

Figure 8: Cluster location considering land use land cover, stream network, and DEM
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Similar flood concentrations are observed in the northern part of the study area. 

This region is gradually urbanizing with the establishment of industrial facilities and 

apartment complexes near the Guwahati Lokpriya Gopinath Bordoloi International 

Airport. Field photographs in Figure 1 (a) and (b) show the presence of water hyacinth 

and wetland-like features, which get inundated during the rainy seasons. These natural 

features are crucial for floodwater mitigation. It is essential to regulate concrete 

construction in these eco-sensitive areas to ensure future sustainability. The cluster in 

the central portion of the study area is mainly agricultural lands. The location of the 

study area is a narrow valley adjacent to the Shillong plateau and River Brahmaputra 

with a complex fluvial-morphological scenario, based on the intensity of rainfall in 

the upper catchments of River Brahmaputra as well as in the Meghalaya, the flood  

situations vary, and the dynamism may be witnessed in vulnerable clusters. 

5. Conclusion
The primary objective of this study is to identify areas in the southwest vicinity of 

Guwahati city that are susceptible to flooding and natural waterlogging, with a focus 

on future urbanization. Identifying flood-vulnerable clusters through historical 

data and real-time imagery is crucial for urban planning.  The fringe or peri-urban 

landscape is vulnerable in terms of rapid urbanization due to the rural-urban policy 

dichotomy. Towards west and north, the clusters are seen in interconnected networks 

of natural drains, wetlands, and swampy-marshy features adjoining the Brahmaputra 

floodplain, these features are important for flood mitigation, acting as storage for major 

flood events, filtering sediments, and recharging aquifers. A proper hydro-ecological 

assessment is needed before any urban intervention. The landscape of Guwahati city 

was like its fringe areas before urbanization with an abundance of wetlands, swamps, 

and marshes. The unplanned urbanization has led to the encroachment in wetlands, 

blockage of feeder drains intensifying waterlogging, and flash floods. The clusters 

identified in the central portion of the area are mainly vast agricultural lands. Due to 

the proximity of the city and relatively cheap land prices, these parcels are easy targets 

for investors for future ventures. The government should keep a critical eye on the 

infrastructure projects and strong policy decisions to ensure future sustainability to 

avoid water-related hazards. The study will provide a holistic overview of integrating 
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remote sensing and GIS addressing flood vulnerability mapping in the context of urban 

developments.  
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