
Abstract
The land use/land cover (LULC) information of an area is essential for monitoring and

management of natural resources. It is an important input for many geological,

hydrological, ecological and agricultural models. In this study, the IRS-1C LISS-III data

have been used as the primary data source along with NDVI (Normalized Difference

Vegetation Index) and DEM (Digital Elevation Model) images as additional data layers to

improve the LULC classification accuracy in a hilly terrain. Image classification is

performed using most widely used Maximum Likelihood Classifier (MLC). The IRS-1C

PAN image is used as the reference data for generating training and testing datasets. The

preparation of reference data is ably supported with field data as well as information from

topographic maps. The results show a reasonable improves in the accuracy of

classification on incorporation of NDVI and DEM as ancillary data. The LULC map thus

prepared is useful as one of the input data layers for landslide hazard study. High spatial

resolution IRS-1CPAN and PAN-sharpened LISS-III images were used to prepare a

landslide distribution map which was verified from field surveys. Landslide density is

found to be maximum in barren lands, followed by agriculture land, built-up land, tea

plantation area, and forest cover. The relation between LULC and landslide density thus

obtained was later used as an input for landslide susceptibility mapping.
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Introduction
The land use/land cover (LULC) information of an area is essential for proper planning,

management and monitoring of natural resources. It is an important input for many

geological, hydrological, ecological and agricultural models. LULC map generally shows

distribution of forest cover, water bodies and types of land use practices. Many studies

(e.g., Coppin and Richards, 1990; Selby, 1993; Mehrotra et al., 1996) have revealed a clear

relationship between vegetation cover and slope instability. 

Remote sensing images help in gathering quality LULC information at local, regional

and global scales because of its synoptic view, map like format and repetitive coverage

(Csaplovics, 1998; Foody, 2002). Further, in mountainous regions like the Himalayas,

particularly in the inaccessible areas due to high altitudes and ruggedness in the terrain,

remote sensing images are quite useful for mapping. Due to changes in topographical

and environmental conditions, spectral characteristics also change from region to

region (Arora and Mathur, 2001). Therefore, the approach for LULC classification that

incorporates ancillary data from other sources may be more effective than that is based

solely upon multi-spectral data from one sensor. The topographic maps are useful in

generating the DEM, which along with its attributes, such as slope and aspect; provide

the basis for multi-source classification (Strahler et al., 1978; Jones et al., 1988; Frank,

1988; Janssen et al., 1990; Saha et al., 2005). Furthermore, the derivatives of multispectral

images like Principal Components Analysis (PCA) and Normalised Difference Vegetation

Index (NDVI) may also be useful to improve the LULC classification from remote sensing

data in mountainous regions (Eiumnoh and Shrestha, 2000; Saha et al., 2005). In

mountainous terrain, such as Himalayas, shadow is the major problem in achieving the

accurate land use land cover classification from remote sensing data. The use of NDVI

image as an additional layer for classification has been recommended to overcome this

problem, since the band ratio derivatives may help in nullifying the topographic effect

to some extent (Holben and Justice, 1981; Apan, 1997). However, NDVI alone may not be

able to eliminate the shadow effect completely. Later, Eiumnoh and Shrestha (2000) and

Saha et al. (2005) incorporated both NDVI and DEM images as additional layers in the

classification process and found a significant improvement in the classification

accuracy.

This study focuses on Darjeeling hill which lies between latitudes 26°56’N and 27°8’N

and longitudes 88°10’E and 88°25’E and covers an area of about 254 km2 (Figure 1). The

main habitat areas are Darjeeling, Ghum, Sonada, and Sukhiapokhri. The maximum

elevation of 2,584 m occurs at the Tiger hill. The area is dominated by slopes ranging

between 15° and 35° while steep slopes (i.e., >35°) occupy a smaller area. The annual
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rainfall in the region varies from a low of 3,000 mm to a high of 6,000 mm. The major

land use practice in the study area is tea plantation and agriculture mostly developed

around the habitat areas.

Fig 1. Study area 

In this study, the IRS-1C LISS-III data (22nd March, 2000) with a spatial resolution of

23.5m has been used as the primary data source along with NDVI and DEM images as

additional data layers to implement multi-source LULC classification process. A

separability analysis using transformed divergence is performed to examine the

significance of various spectral bands in the classification process. Most widely used

Maximum Likelihood Classifier (MLC) is used to perform the classification. A very small

portion covered by the cloud and its shadow in the original LISS-III image has been

masked and then used as the primary data to perform LULC classification. The PAN

image (3rd April, 2000) with a spatial resolution of 5.8m is used as the reference data for

generating training and testing datasets. This is in accordance with other studies on

LULC classification of remote sensing data, where finer resolution data have also been

used as reference data (Fisher and Pathirana, 1990; Foody and Arora, 1996; Shalan et al.,
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2003; Saha et al., 2005). The preparation of reference data is ably supported with field

data as well as information from topographic maps. The LULC map thus produced was

used for landslide hazard study. High spatial resolution IRS-1C-PAN and PAN-sharpened

LISS-III images were used to produce a landslide distribution map which was verified

from field surveys. A total of 101 landslides showing areas occupied by sliding activity

were identified. The landslide distribution in different categories of land use land cover

in the area was also analyzed.

Methodology
A multi-source image classification involves a number of steps which include generation

of ancillary data layers (NDVI and DEM), image classification and accuracy assessment. 

Geometric registration of images

The digital images acquired from remote sensing satellites are fraught with geometric

distortions, which render them unusable, as these may not be directly correlated to

ground locations (Gupta, 2003). Geo-referencing involves the process of assigning map

coordinate information to the image data so that the geometric integrity of the map in

the image is achieved. 

In this study, the geo-referencing of remote sensing data (IRS-1C LISS-III and IRS-1D

PAN Images) has been performed using ERDAS Imagine software. In the first step, the

Survey of India topographic maps have been geo-referenced to geographic coordinate

system. These maps have been later used as reference maps for geo-referencing of

satellite images.

The IRS-1C LISS-III image has been geo-referenced with the topographic maps by

taking input GCPs from the LISS-III image and reference GCPs from topographic maps.

A total of 35 well distributed GCPs have been considered for registration and an RMS

control point error of 0.83 pixels is obtained. Also, the registration is checked with

another set of independent 11 GCPs, which yielded an RMS error of 0.96. It is found that

the RMS errors obtained using 1st order polynomial model for geometric correction is

within the acceptable limit of one pixel. The nearest neighbor resampling method has

been adopted to produce the geo-referenced LISS-III image (Figure 2), as this preserves

the original brightness values in the output image.

Co-registration of IRS-1D PAN with IRS-1C LISS-III image is essential in view of the

fact that the PAN image is used for selecting training and testing data samples for

multispectral (LISS-III) image classification. Therefore, the PAN image has been

registered with LISS-III image by taking input GCPs from the PAN image and reference
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GCPs from LISS-III image. In this co-registration process, a set of 50 well distributed

GCPs produced an RMS control point error of 0.71 pixels and 15 check GCPs yielded an

RMS error of 0.68 pixels. The 1st order polynomial model with nearest-neighbor

resampling method is used for this purpose. The registered PAN image thus obtained is

shown in Figure 3.

The optical remote sensing images invariably contain the effect of selective

atmospheric scattering and absorption of the solar radiation. In the visible - near infrared

region of the electromagnetic spectrum, scattering is the most dominant process leading to

path radiance. This has an additive role and affects the brightness values (Jensen, 1996).

The remote sensing data, therefore, need to be corrected. Although, there are many

techniques to perform this correction, the most widely used, the 'dark object subtraction'

technique (Chavez, 1988) has been adopted to correct the atmospheric scattering. The

minimum DN values for green, red, near infrared (NIR) and shortwave infrared (SWIR)

bands were extracted and were expected to be due to path radiance. These values were

subtracted from DN values of pixels in the respective bands to generate a path radiance

corrected image. The corrected LISS-III and PAN images formed the data sources for

preparation of land use land cover map.

Fig 2. IRS-1C LISS-III False Colour Composite (NIR=R, Red=G, Green=B)
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Fig 3. IRS-1D PAN image of the area (A large portion of this image is covered by clouds)

Ancillary Data generation

NDVI layer

During field surveys, different types of vegetation were observed in the study area.

Hence, NDVI has been used as an ancillary data layer in the classification process to

enhance the separability among various vegetation classes, and also to reduce the effect

of shadow due to topography. The NDVI can be stated as,

NDVI = (NIR band - Red band) / (NIR band + Red band) (1)

The DN values of pixels of the NDVI image thus produced range from 0.00 to 0.83

with higher values indicating increasing biomass. The positive values represent various

types of vegetation classes. Near zero values indicate non-vegetation classes, such as

water, river sand and barren land.

DEM layer

DEM represents the spatial variation of elevation over an area. It is an important basic
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component in LSZ studies. In this study, DEM has been used as an input layer to multi-

source classification of remote sensing data for land use land cover map preparation to

minimize the error in classification due to topographic variations.

The DEM has been prepared using the conventional and most prevalent method by

considering the contours from Survey of India topographic maps. The contours at 10m

and 20m intervals on 1:25,000 scale topographic maps and 40m interval on 1:50,000

scale maps respectively have been used to generate the DEM using the triangulated

irregular network (TIN) method. A DEM at spatial resolution corresponding to pixel size

of 25m × 25m has been generated to match the nominal spatial resolution of LISS-III

image.

Image Classification

Image classification process is based on several steps, a) selection of LULC classification

scheme, b) formation of training dataset, c) separability analysis, d) Maximum

Likelihood Classification (MLC) and e) accuracy assessment. The methodology of multi-

source image classification for LULC is given in figure 4.

Selection of LULC classification scheme

A classification scheme defines the LULC classes to be considered to prepare land use

land cover map from remote sensing image data. The number of LULC classes are

sometimes chosen according to the requirements of the specific project for a particular

application (Arora and Mathur, 2001; Saha et al., 2005). In this study, the LULC classes

are chosen keeping in view its application for landslide studies. During field visits, eight

classes were identified in the study area. These classes are dense forest, sparse forest, tea

plantation, agriculture, barren, built up, water bodies and river sand. Detailed

description of all these classes along with their interpretative characteristics on the FCC

of LISS-III image and PAN image is given in Table 1. This information is used to identify

the training and testing areas on the image for carrying out supervised classification and

accuracy assessment.

Formation of training dataset

The success of image classification highly depends on the quality of training dataset

which in turn depends on the capability of image interpretation and knowledge on the

LULC patterns of the study area. In this study, the number of training   pixels for each

class (Table 2) was defined in accordance with the proportion of the area covered by the

respective classes on the ground. Similar to other studies, the fine spatial resolution PAN
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image and Survey of India topographic maps were used as reference data for ground

truths to demarcate the training pixels on the LISS-III image. All the eight LULC classes

were visually interpreted on the PAN image based on their characteristics. The PAN

image derived information and ground truth data from field survey were used to

demarcate training areas on LISS-III image for all the classes. Majority of training areas

were normally distributed, which is a basic requirement of the maximum likelihood

classifier used in this study.

Fig 4. Methodology for multi-source LULC classification
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Table 1. Characteristics of LULC classes
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Land use land

cover class
Description

Interpretation on

LISS-III colour

infrared composite

Interpretation on PAN

image

Dense forest Tall dense trees
Dark red with rough

texture

Dark tone with rough

texture

Sparse forest

Scanty tall trees and

low vegetation

density with exposed

ground surface

Dull red to pinkish Light tone with dark patches

Tea plantation

Tea plants with

moderate vegetation

density

Pink and smooth

appearance

Light tone with smooth

patches

Agriculture
Crops on hill terraces

as step cultivation

Dull red and smooth

appearance

Step like arrangement of

fields and bright tone with

smooth texture

Barren land
Exposed rocks/soils

without vegetation
Yellowish Very bright tone

Built up area
Towns and villages;

block like appearance
Bluish

Typical blocky appearance

with light tone

Water bodies Rivers and lakes

Cyanish blue to blue

according to the

depth of water and

sediment content

Dark tone

River sand
River sediments on

the bank
Cyanish Bright tone



Table 2. Number of training pixels for LULC classes used in image classification

Separability analysis

A separability analysis was performed with multi-source data layers using the training

dataset of all the eight LULC classes to observe the spectral discrimination between

these classes. In this study, a combination of six data layers comprising of Green, Red,

Near Infrared (NIR) and Shortwave Infrared (SWIR) bands of multispectral LISS-III

image, NDVI and DEM data layers were used as the input dataset for multi-source

classification. Separability is a statistical measure devised on the basis of spectral

distances computed for a combination of bands. From a number of separability

measures, the Transformed Divergence (TD) measure (Janssen et al., 1990) has been

adopted in this study. The TD values range from 0 to 2000. A value close to 2000 indicates

the best separability between the classes. The values between 1800 and 2000 are

generally considered adequate to proceed for classification. As the present study intends

for a multi-source classification, the average TD values of various band combinations

including the ancillary data were computed. The band combinations with four bands of

LISS-III image, NDVI and DEM resulted in the highest average TD value of 1977 as

compared to those for the combination of only four spectral bands of LISS-III image and

another combination of four spectral bands of LISS-III image and NDVI. The lowest TD

value of 1723 is obtained for the signatures of barren land and agriculture. This is on

expected lines as the agriculture lands without cultivation appear to be barren lands.

Hence, a low separability between these two classes is observed. This analysis indicates

that LISS III image together with NDVI and DEM has produced the best separability

amongst various pairs of LULC classes. All the three combinations were used to perform

LULC classification.
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Maximum Likelihood Classification (MLC)

Over the years a number of classifiers have been developed and tested for remote sensing

image classification. Each of these classifiers has its own merits and demerits in terms of

efficiency and accuracy. The maximum likelihood classifier (MLC) was found to be the

most accurate and most widely used for image classification, when the data distribution

assumptions are met. The MLC is based on the decision rule that pixels of unknown class

membership are allocated to those classes with which they have the highest likelihood of

membership (Foody et al., 1992). The details on this classifier may be found in Richards

and Jia (1999). In this study, the MLC has been used to produce land use land cover maps,

as it takes the variability of classes into account via covariance matrix. 

Accuracy Assessment of LULC Classification

A testing dataset has been prepared with the help of reference data (PAN image and field

data). The class allocation of each pixel in the classified image is compared with the

corresponding class allocation on reference data to determine the classification

accuracy. The pixels of agreement and disagreement are compiled in the form of an error

matrix where the rows and columns represent the number of LULC classes and the

elements of the matrix represent the number of pixels in the testing (reference) dataset.

A number of accuracy measures, such as overall accuracy, user's accuracy and

producer's accuracy can be estimated from the error matrix (Congalton, 1991). The

overall accuracy indicates the accuracy of classification as a whole, where as user's and

producer's accuracy measures indicate the accuracy of individual LULC classes.

In the present study, field data on LULC classes and finer resolution PAN image have

been used as reference data to prepare testing dataset for accuracy assessment. The

testing pixels for each class have been randomly selected. These pixels are distributed all

over the study area and are larger than 75 to 100 pixels per class as recommended by

Congalton (1991) for accuracy assessment purposes. For comparison, the same testing

dataset was used to determine the overall and producer's accuracy from different LULC

classifications.

Results and Discussions

The objective of this study is to perform a multi-source classification including spectral

and ancillary data to produce an accurate LULC map for its use in landslide study.

LULC Classification

The overall classification accuracy of 91.7% has been obtained in case of the dataset
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using a combination of four spectral bands of LISS III image, NDVI and DEM. The overall

accuracy corresponding to other two combinations (four spectral bands of LISS III

image; four spectral bands of LISS III image and NDVI) are 88.1% and 89.4% respectively.

Hence, it is clearly observed that on inclusion of NDVI and DEM data layers with the

spectral data of LISS III, the overall accuracy for LULC classification is increased.

The accuracy of individual LULC classes was assessed based on producer's accuracy

for all the three combinations (Table. 3). A glance at producer's accuracy values shows

that the accuracy of all the LULC classes has increased gradually when NDVI and DEM

data layers are included one by one in the classification process. This highlights that the

misclassifications between the classes have been reduced.

It is observed in case of 6 data layer combination (LISS III, NDVI & DEM) producing

highest overall classification accuracy that all the individual LULC classes except barren

lands, built-up areas and water bodies have shown more than 90% producer's accuracy.

The class barren land has been misclassified to some extent with the agriculture and tea

plantation classes whereas the class built-up area has been misclassified with the classes

tea plantation, agriculture, barren land and sparse forest. The class water body has been

considerably misclassified with the class river sand.

Table 3. Producer's accuracy of individual LULC classes derived from accuracy 

assessment of classifications using different combinations

The LULC classified image with highest accuracy contained some stray pixels over

the whole image. To generate a smooth image by removing these stray pixels, a 3 × 3

pixels majority filter has been applied which assigns the most dominant class to the

central pixel. Subsequently, the LULC information of the masked portion in the original

LULC classes 
Producer's accuracy (%)

LISS III 
(4 spectral bands) LISS III + NDVI LISS III +

NDVI+DEM

Dense forest 98.5 98.3 98.6%

Sparse forest 93.5 94.8 97.2%

Tea plantation 96.6 98.3 99.2%

Agriculture 82.6 89.5 95.9%

Barren land 81.2 79.0 82.3%

Built-up area 75.4 76.7 78.1%
Water body 86.3 87.5 89.2%
River sand 90.4 91.5 93.4%
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LISS III image has been replaced by the information collected from the topographic

maps and some field data. The land use land cover layer thus prepared is shown in

Figure 5. It can be observed that the northeastern, southeastern and southwestern parts

of the area are dominated by thick forests. Tea plantation and sparse forests are the

major land use land cover categories, which are distributed all over the area. The area-

wise distribution of different LULC categories has been derived and is listed in Table 4.

It is observed that the most frequent categories of LULC are tea plantation and sparse

forest, followed by thick forest, agriculture land, barren land, habitation, the least being

water bodies and river sand. 

Fig 5. Land use/land cover map of the area

Landslide scenario in different LULC classes 

Mapping of existing landslides is essential to understand the relationships between the

landslide distribution and the causative factors, specifically land use land cover factor in

this case. As, it is just not possible to map each and every landslide via field surveys in

such a rugged terrain, a comprehensive mapping of landslide was undertaken through

remote sensing image interpretation, aided by field verifications. 
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The identification of landslides on remote sensing image is based on the spectral

characteristics, shape, contrast and the morphological expression. In general, there is a

distinct spectral contrast between landslides and the background area. High spatial

resolution IRS-1C-PAN and PAN-sharpened LISS-III images have been used for

landslide identification, recognition and mapping. On the PAN image, landslides appear

as features of very light tones due to rock debris without any vegetation on the slope.

After enhancing the contrast of the PAN image, landslides occurring in barren areas

could also be identified. A few old landslides were identified on the basis of their shape,

landform and drainage. Feature extraction and interpretation is highly effective by using

PAN-sharpened multi-spectral image products (Welch and Ehler, 1987; EOSAT, 1994;

Sabins, 1996; Sharma et al.. 1996; Saraf, 2000; Prakash, et al., 2001; Sanjeevi et al., 2001;

Shanmugam and Sanjeevi, 2001; Gupta, 2003). On the PAN-sharpened LISS-III image,

the landslides appear as bright-white features (due to high reflectance) that are easily

distinguished from other features. Further, landslides are also characterized by fan

shape, sharp lines of break in topography and sometimes due to local drainage anomaly.

Often, the toe part of the slide gives rise to a debris flow channel. 

Many of the landslides identified on both PAN and PAN-sharpened LISS-III images

have also been verified in the field. A total of 101 landslides of varying dimensions (180

m2 to 27400 m2) were identified from remote sensing images and field surveys. Majority

of landslides have an area-wise extent of 500 m2 - 2000 m2. Most of the observed

landslides are rock slides. However, in some cases, complex types of failure are also

present. 

The spatial distribution of landslides in different LULC categories has been obtained

(Table 4). It is observed that barren land and agriculture categories have maximum

landslide densities in comparison to other categories as should be the case and water

bodies and river sand categories are devoid of landslides.
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Table 4. Distribution of existing landslides in different LULC categories

Conclusions
In hilly regions like the Himalayas, particularly in the inaccessible areas due to high

altitudes and ruggedness in the terrain, remote sensing images are the only available

source for land use land cover mapping and monitoring. The factors influencing

classification accuracy of various LULC classes in hilly areas using remote sensing data

may be attributed to the presence of cloud cover, shadow, steep slopes, low sun angle

and differential vegetation cover. Therefore, the approach for land use land cover

classification that incorporates ancillary data from other sources has been more

effective than that is based solely upon multi-spectral data from one sensor. The present

study showed a reasonable improve in accuracy of LULC classification on incorporation

of DEM and NDVI layers with IRS-LISS-III image. An overall classification accuracy of

91.7% and producer's accuracies for the majority of LULC classes of the order of above

90% were obtained in this case. It is also observed that the use of DEM and NDVI layers

in the classification process could address the problem of misclassifications incurred

due to the effect of shadow in the image and also due to the similarity in spectral

characteristics of some classes such as barren lands and built-up areas in hilly regions.

Hence, this study highlights the efficacy of multi-source classification to increase the

accuracy of LULC classification in hilly regions like the Himalayas. However, the

availability of multi-season LISS-III images would have probably provided better results.

Further, the spatial distribution of landslides in different LULC categories showed

LULC

categories

Area of LULC

categories

(km2)

Percent area

(%)

(a)

Landslide area

per category

(km2)

Percent

Landslide area

per category

(%)

(b)

Landslide

Density

(b/a)

Agriculture 22.3 8.8 0.053 25.0 2.84

Tea Plantation 89.1 35.0 0.052 24.6 0.703
Dense Forest 45.4 17.8 0.024 11.3 0.635

Sparse Forest 81.1 31.9 0.041 19.3 0.605

Barren Land 8.9 3.5 0.036 17.0 4.857 

Habitation 6.5 2.6 0.006 2.8 1.077 

Water 0.6 0.2 0.000 0.0 0.000

River Sand 0.6 0.2 0.000 0.0 0.000
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that barren lands have the maximum landslide density, followed by agriculture land,

built-up land, tea plantation area and forest cover. These results reflect the real field

conditions in hilly terrains. The relationship thus obtained was later used as an input for

landslide susceptibility mapping.
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